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Abstract

Thermoelastic buckling and free vibration analysis of geometrically perfect isotropic hemispherical shells
subjected to axisymmetric temperature variation are presented. First order shear deformation theory is used
to analyze the moderately thick elastic hemispherical shells. The variations of various field variables are
assumed in the circumferential direction and the finite element matrices used in the numerical studies are
based on the semi-analytical method. The formulation is validated for thermal buckling strains available in
the literature. Thermal buckling temperatures are evaluated for deep shells having a cut-out at the apex.
Parameters considered in the study include hemispherical shells with a=h ratios of 100 and 500 and each
with cut-out angle at apex equal to 7�, 30� and 45�. Boundary conditions considered are clamped–clamped
and clamped–free. A study on the distribution of the stress resultants due to thermal loading is examined in
order to relate their influence on the buckling temperature of the shells with respect to above-stated
geometric parameters. The effect of temperature on the free vibration natural frequency of the
hemispherical shell is also analyzed.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Spherical shells prominently find great use for containing fluid under normal as well as high
pressure, especially in the oil and chemical industries. Most commonly, part of the full sphere
mainly in the form of hemisphere or shallow sphere forms a primary part of the whole assembly as
in the fuel tank, propellant tank, combustion chambers, submarines, satellites, to quote few
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examples. Spherical shells are used as containment vessel for nuclear reactor in nuclear power
plant. It is well known that components taking the form of a sphere or part of the sphere are
capable of withstanding high-pressure loads. But the practical limitation is the high cost involved
in the manufacture of spherical components.
A detailed review of the literature which encompasses stability studies on perfect and imperfect

shallow spherical shells under pressure loading using non-linear theories is presented. Few review
articles on vibration of shells, thermal buckling of plates and shells, and computational models
used for studies of plates and shells under high temperature are also presented. Buckling
phenomenon in shells either due to mechanical compressive pressure loading as well as
compressive loading at sufficient elevated temperature is highly complex in nature. It is well
understood that buckling of shells is highly sensitive to geometric imperfection which are inherent
during the fabrication processes. Inconsistency of sphericity, thickness and presence of residual
stresses are few parameters that can be present in an imperfect shell. The theoretical prediction of
the buckling load grossly overestimates the actual buckling load when determined from
experiments. Teng [1] has laid great emphasis on the aspects that govern the buckling load of thin
shells in his review article. Teng reviews the works on buckling of thin shells which have
considered geometric imperfection, uniform loading, wind and earthquake loads, non-uniform
torsion, localized circumferential compression, local axial compression and non-uniform external
pressure. He also points the role and contribution of the research community in making the
numerical shell buckling analysis in design to be directly used in predicting the buckling strength.
Thornton [2] has presented a detailed review on the thermal buckling and post-buckling of plates,
cylindrical panels, shallow shells, cylindrical shells and conical shells. It is stated that the
magnitude of temperature, its variation and distribution has enormous consequence on the
thermal buckling behavior. Thermal buckling analysis is highly complex in aerospace structures
and orbiting space structures mainly due to non-uniform temperature exposure as well as
radiation heat transfer and also due to presence of adjoining components. The review article
concludes that advanced composite materials are suitable candidates for achieving better
performance under the action of the combined loading. In the review article which deals on
dynamic behavior of homogeneous shells by Qatu [3], it can be seen that in the last one decade
there are few reported research articles on the aspects considering the thermal effects on dynamic
behavior of cylindrical, conical and shallow spherical shells. Noda [4] reviews the nature of the
articles published on thermal stresses in structural components and components involved in the
manufacturing processes like casting and welding which considers the material properties
dependent on temperature. Noor and Burton [5] makes an exhaustive review in the computational
area of multilayered composite plates and shells subjected to high temperature. Brief discussion
on the advantages and disadvantages of various shell theories used for the study of vibration
behavior of shells has been dealt in the review article of Liew et al. [6].
Archer [7] investigated the influence of uniform tensile and compressive stress states on the

natural frequencies of shallow spherical shells using the shallow shell equations containing the
inertial loading term. Fitch [8] used Marguerre’s non-linear shallow shell theory to carry out
investigation on the axisymmetric as well as asymmetric buckling behavior for a clamped shallow
spherical cap. Pedersen and Jensen [9] outlines a detailed analytical procedure for the practical
design in determining the buckling load of spherical shells highly sensitive to geometrical
imperfections subjected to complicated static and dynamic loads. They illustrated the design
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procedure for cargo tanks in ship used for transportation of liquefied natural gas and large
spherical containment shells for nuclear power plant. Studies conducted by Yao [10] on truncated
hemispherical shells under axial tension led to the conclusion that when the axial tensile load
reaches a critical value the hoop stress causes the truncated hemisphere to buckle. Krenzke and
Kiernan [11] compared the experimental results of the collapse pressure (buckling pressure) for a
near perfect shallow spherical shells with the results from the theory of symmetric buckling
developed by Budiansky, Weinitschke and Thruston (in case of short clamped spherical shell
segments) and non-symmetric buckling theory developed by Huang (in case of longer clamped
spherical shell segments). Huang [12] derived the governing equations for the study of
unsymmetrical buckling of clamped shallow shells subjected to uniform pressure and undergoing
unsymmetrical deformation just below the critical buckling pressure (for the case of
axisymmetrical deformation). Fitch and Budiansky [13] presented an analysis for the buckling
and post-buckling behavior of a clamped spherical cap uniformly loaded over a circular region
centered at the apex. They report the findings on the effect of increasing the area of the loading
region on the buckling and post-buckling behavior. Gu [14] worked on the buckling behavior of
clamped shallow spherical shells with a center hole, and in particular examined the effects of the
hole with different radii and two kinds of boundary conditions on the buckling behavior.
Gon@alves [15] used the fourth order Maguerre’s shallow shell equations to carry out studies on
the influence of axisymmetric initial geometric imperfections and a non-linear compressive stress
state on the natural frequencies of the clamped shallow spherical shells.
Williams [16] considered the equations governing the stresses and displacements in a spherical

shell due to axisymmetric temperature distribution given by Boley and Weiner. He presented the
thermoelasticity solutions to the equations of thin spherical shells by the method of matched
asymptotic expansion which also incorportates the order of magnitude analysis. Formulae for
computing meridional and circumferential stress components are presented for sufficiently thin
spherical shells. Krizhevsky and Stavsky [17] carried out investigation on the sensitivity of
axisymmetric buckling loads for orthotropic shallow spherical shells subjected to steady state
thermal field. Aggarwala [18] conducted studies on the thermal instability of simply supported
bimetallic shallow spherical shells. Liu [19] has developed a non-linear thermal stability theory for
the analysis of bimetallic shallow spherical shells and truncated conical shells subjected to uniform
temperature field, which are important component of many precision instruments. Jayaraman and
Rao [20] computed the stress variations in a spherical shell with a conical nozzle under conditions
of uniform heating as well as uniform heating but temperature varying linearly across the
thickness. Jianping and Harik [21] presented an iterative finite difference procedure for the
analysis of spherical shells with varying wall thickness and subjected to pressure and surface
temperature loading. Variation of material properties with respect to temperature were used
according to AISC: Specification 1988. The inner and outer surface tangential stresses were
computed and were in good agreement with results obtained using ANSYS. Kapania and Mohan
[22] developed a flat triangular shell element using the Discrete Kirchhoff Theory plate bending
element and Linear Strain Triangular membrane element. This element was used to carry out free
vibration and thermal analysis of laminated plates and spherical shells under different loading
conditions.
Few among the notable research studies on the thermal buckling of thin walled cylindrical shells

are due to Hoff [23], Abir and Nardo [24], Zuk [25] and Radhamohan and Venkataramana [26].
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Instability of truncated conical shells under thermal loading was studied by Lu and Chang [27].
The recent work on thermal buckling of spherical shells is reported by Eslami et al. [28], Sanders
and Donnel–Musthari–Vlasov non-linear strain–displacement relations are utilized to determine
the thermal buckling load for uniform temperature loading and radial temperature difference
loading cases.
Thus it is clear that there exist very few research articles reported on linear thermoelastic

buckling of hemispherical shells with cut-out as well as studies on the effect of uniform
temperature on the free vibration natural frequency. This work presents the numerical results on
the thermal buckling temperature for hemispherical shells with a cut-out at the apex for two edge
conditions. Meridional stress resultants and hoop stress resultants are computed to correlate the
magnitude of buckling temperature. The effects of the magnitude of the angle of cut-out at apex
as well as the boundary conditions at the edge are studied. Few numerical results are also
presented to illustrate the effect of temperature on the free vibratory natural frequency of the
hemispherical shells. The numerical computation is based on the strain–displacement relations for
general shells of revolution which accounts for transverse shear deformation. Using the semi-
analytical method the finite element stiffness and mass matrix of the shell are computed. A
uniform temperature distribution is assumed to exist over the shell and temperature across the
wall thickness is constant. Assuming the various material properties to be independent of
temperature, thermal loading under isothermal conditions is computed. The geometric stiffness
matrix thus results from the initial stress resultants and moment resultants. This makes possible
for a simple thermoelastic buckling analysis and free vibration analysis of initially stressed
hemispherical shells with cut-out at apex due to uniform temperature rise.

2. Semi-analytical finite element method for analysis of hemispherical shells with cut-out at apex

The following assumptions are considered in the formulation and subsequent analysis: The
hemispherical shell is geometrically perfect, homogeneous and isotropic. In determining critical
buckling temperature small bending displacements of the shell are assumed, material properties
are independent of temperature, temperature through the thickness of shell is uniform and overall
the shell is subjected to a constant thermal loading. In effect we use an uncoupled formulation for
the thermoelastic buckling and free vibration analysis.

2.1. Structural stiffness and mass matrix

The details of the formulation are same as that presented in the recent article published by the
authors on the study of buckling and dynamic analysis of composite cylindrical shell bonded with
PZT layers, Ganesan and Kadoli [29]. The present study uses the same formulation for the reason
that the semi-analytical finite element for the shell laminate developed by Rao and Ganesan [30] is
for a general shells of revolution. Hence one needs to define the proper geometric variables like the
quantities Rf and Ry:
Accordingly from Fig. 1, the quantities Rf(O2Q) and Ry(O3Q), the principle radii of curvature

of the shell are set equal to same magnitude and thereby the co-ordinate details for hemispherical
shell can be obtained.
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The evaluation of thermal load vector and the resulting initial stress resultants and moment
resultants are based on first order shear deformation theory (FSDT). The stiffness matrix and the
geometric stiffness matrix are evaluated by considering the total strain energy in shell

U ¼ U1 þ U2;

where U1 is the strain energy due to vibratory stresses and U2 is the strain energy due to initial
stresses which results from steady state temperature. Strain energy U1 is given by

U1 ¼
1

2

Z
V

esssss þ eyysyy þ gyztyz þ gsztsz þ gsytsy
� �

dV :

The kinematic relations for a doubly curved shells of revolution in the (s; y; z) co-ordinate based
on FSDT are as follows, see Rao and Ganesan [30]:

ess ¼ ðe0ss þ zk1s Þ=A1; gyz ¼ g0yz=A2;

eyy ¼ ðe0yy þ zk1yÞ=A2; gsz ¼ g0sz=A1;

gsy ¼
1

A1

1

A2
ðg0sy þ zk1syÞ;

where

1

A1
¼

1

ð1þ z=RfÞ
and

1

A2
¼

1

ð1þ z=RyÞ

in the above equations Rf and Ry are the principle radii of curvature of the shell and z is the
thickness measured along the z-axis. In the above equation, ess; eyy; gyz; gsz; gsy are the total strains
which comprise of the normal strains and the shear strains, e0ss; e

0
yy; g

0
yz; g

0
sz; g

0
sy; referred to mid-

surface and k1s ;k
1
y; k

1
sy; the change in curvature of the mid-surface. The mid-surface strains and
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strains due to change of curvature for a general shell of revolution are described as follows:

e0ss ¼
@u0

@s
þ

w

Rf
; e0yy ¼

1

r

@v0

@y
þ

u0

r
cosfþ

w0

r
sin f;

g0yz ¼ fy �
v0

r
sin fþ

1

r

@w0

@y
; g0sy ¼

1

r

@u0

@y
þ
@v0

@s
�

v0

r
cosf

g0sz ¼fs �
u0

Rf
þ

@w0

@s
;

k1s ¼
@fs

@s
; k1y ¼

1

r

@fy

@y
þ

fs

r
cos f;

k1sy ¼
1

r

@fs

@y
þ

@fy

@s
�

fy

r
cosfþ

sin f
r

@v0

@s
þ

1

Rfr

@u0

@y
�

v0

Rfr
cosf:

In the above equations r represents the parallel-circle radius to the shell mid-surface, and can be
inferred from Fig. 1 as r ¼ Ry sin f: The elastic constant matrix comprising various integrated
shell stiffnesses (Aij; Bij; Dij and Fij) relates the stress and moment resultants vector, {N}, and
strain vector, {e}.

fegT ¼ fe0ss e0yy g0sy k1s k1y k1sy g0sz g0yzg;

fNgT ¼ fNss Nyy Nsy Mss Myy Msy Qs Qyg;

ðAij ;Bij;Dij;FijÞ ¼
Z þh=2

�h=2

%Qijð1; z; z2; z3Þ dz:

The methodology for the derivation of the element stiffness matrix for the shell laminate is
based on the usual finite element procedure. Shear correction factor equal to 5

6
is used. The mass

matrix is obtained from the kinetic energy of the shell continuum,

KE ¼
r
2

Z
V

ð ’u2 þ ’v2 þ ’w2Þ dV :

The strain energy due to initial stresses U2; which is stated in Rao [31], is used to evaluate the
geometric stiffness matrix. Neglecting the strain energy due to transverse shear stresses, the
expression for the strain energy due to initial stresses U2 is

U2 ¼
1

2

Z
V

fðei
ssÞ

2s�ss þ ðei
yyÞ

2s�yy þ 2gi
syt

�
syg dV ;

where s�ss;s
�
yy and t�sy are the initial stresses and the corresponding non-linear strains ei

ss; e
i
yy and gi

sy
are given as follows:

ei
ss ¼

1

ð1þ z=RfÞ
@wi

@s
�

ui

Rf

� �
;

ei
yy ¼

1

ð1þ z=RyÞ
1

r

@wi

@y
�

vi

r
sin f

� �
;

gi
sy ¼ ei

sse
i
yy:
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In the semi-analytical approach, the generalized displacement field is assumed to depend in the
circumferential direction for various harmonics as follows:

u0 ¼
XN
m¼0

u0m cos my; v0 ¼
XN
m¼0

v0m sin my; w0 ¼
XN
m¼0

w0m cos my;

c0s ¼
XN
m¼0

c0sm cos my; c0y ¼
XN
m¼3

c0ym sin my;

where u0; v0 and w0 represents the mid-surface displacements. c0s and c0y are the shear rotations
of the mid-surface normal. ‘m’ represents the circumferential mode number. Various Fourier
harmonics would be decoupled if one considers only small vibrations.

2.2. Thermal load and initial stress evaluation

The study considers a situation where the hemispherical shell is maintained at a constant
temperature so that temperature is constant over the thickness of the shell, Tðs; y; z; tÞ ¼ Tðs; y; tÞ:
In semi-analytical approach we assume the temperature to vary in the y direction. Based on
Fourier series expansion, the temperature will be expressed as

T ¼
XN
m¼0

Tm cos my:

When a body is maintained at a temperature above the stress-free (or reference) temperature,
this will result in the initial strains in the body. The potential for a continuum under thermal
environment is given by

P ¼
1

2

Z
V

fegT D½ 
feg dV �
Z

V

fegTfkgT dV ;

where {e} is the strain vector, {k} is the vector of temperature stress coefficients and T is the
temperature rise from the stress free temperature. Based on the minimization of the total
potential, in the above equation the second term will yield the thermal load vector. One can
compute the thermal load vector and thereby determine displacement field due to thermal load.
Finally, the stress resultants and moment resultants are obtained which will be used to compute
the geometric stiffness matrix. The interested readers can refer to Ref. [29] for the detailed
procedure.

3. Numerical results and analysis

The numerical study mainly comprises of the computation of the lowest thermal buckling
temperature for different circumferential modes and to study the effect of temperature on the
natural frequency of the hemispherical shells. The classical buckling eigenvalue problem is
formulated comprising the global stiffness matrix and the global geometric stiffness matrix of the
hemispherical shell to obtain the buckling eigenparameters for an arbitrary temperature rise.
Hemispherical shells with a=h ¼ 100 and 500 each having a cut-out at the apex are analyzed. The
size of the cut-out at the apex is specified indirectly by stating the angle subtended by the cut-out
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with the center of the hemisphere. Hence cut-out angle equal to 7�, 30� and 45� are considered for
the study and the geometry of each hemisphere is illustrated in Fig. 2. The base radius ‘a’ of the
hemispherical shell is equal to 1.0m and ‘h’ denotes the thickness of the shell. The edge conditions
are clamped–clamped at the open circular edges, and clamped–free, i.e. clamped at the larger
circular edge and the edge at the cut-out portion at the apex is free, see Fig. 2(b) and (c). The
hemispherical shells will be referred with the following names as mentioned in Table 1 for the
subsequent discussion.
The distribution of the total stress resultants and moment resultants along the meridian of the

hemisphere are also presented in order to explain the dependence of thermal buckling temperature
on the stress and moment resultants. Based on the convergence study the number of finite
elements is decided for the analysis. The finite element code used for the computation of the
buckling temperature is validated against the results as reported in the literature.
Subsequently, a detailed discussion is presented on the numerical results on the thermal

buckling temperature of hemispherical shell with cut-out at the apex. Free vibration natural
frequencies are computed at temperatures other than stress free temperature in order to study the
effect of temperature. Results presented are restricted to hemispherical shell with a=h ¼ 500 and
clamped–clamped boundary condition.

3.1. Convergence study

A typical hemispherical shell with a=h ¼ 100; S=a ¼ 1:0; base radius equal to 1.0m, with dome
height S and cut out at apex equal to 7� is considered. Three finite element models with number of
elements equal to 30, 40 and 50 are considered in the initial study. Fig. 3 shows the typical finite
element mesh of the hemispherical shell using a three-node quadratic line element. The finite
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Fig. 2. Illustration of the geometry of hemispherical shells and boundary conditions.
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element mesh is created in the s-co-ordinate along the mid-surface of the shell. The hemispherical
shell was clamped at both circular edges, illustrated in Fig. 2(b). Using these finite element models
the lowest buckling temperature associated with first 30 circumferential modes were computed.
Since one is interested in the lowest buckling temperature from the design point of view, Table 2

lists the lowest buckling temperature Tcri and its associated mode (m; n), where m represents the
circumferential harmonic and n stands for the axial mode number.
There is monotonic convergence for the lowest buckling temperature. Based on the above

observation and from the point of view of lesser computational time, it is reasonable to use 30
elements for the finite element analysis.

3.2. Validation of the formulation

The semi-analytical finite element formulation for the computation of thermal buckling
temperature is validated against the work of Eslami et al. [28]. Fig. 4 illustrates the typical
configuration of the hemispherical shell considered for the study.
The spherical shell is simply supported at the edges, such that w1 ¼ w1;ff ¼ v1 ¼ u1;f ¼ 0 was

assumed. Symmetric boundary condition at the apex of the shell considered is as follows: v0 ¼
w0 ¼ c0y ¼ 0 (i.e. restrained) and u0;c0s motion and rotation are permitted. The analysis is based
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Table 1

Nomenclature of the hemispherical shells referred in text

Cut-out angle (deg) a/h

100 500

7 Shell A1 Shell A2

30 Shell B1 Shell B2

45 Shell C1 Shell C2

curve on the mid-surface discretised
into finite elements

3 node isoparametric line element
parent element

1

ji
k

2

3

Fig. 3. Typical illustration of the finite element mesh of the hemispherical shell with cut-out at apex using a three-node

quadratic line element.
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on symmetric distribution of thermal buckling load. The prebuckling forces Nf0 and Ny0 will
dictate the equilibrium of the shell. Using the present formulation computation of thermal
buckling strains for hemispherical shell with latitude angle, j ¼ p=2; and for various ratios of h=R

(0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 and 0.10) is carried out using the prebuckling
forces as described in Eslami et al. Comparisons of the thermal buckling strain and their
associated modes are presented in Table 3. The material used is an isotropic with u ¼ 0:3:
Table 3 compares the lowest thermal buckling strain and the associated mode obtained by thin

shell theory (Eslami et al.) and general shell theory for moderately thick shells (present). The
percentage difference between the result increases with increase in h=R: This is expected since the
present computation is based on the thick shell theory. Further it should be noticed that
the buckling strains obtained from the two theory holds well for h=R ¼ 0:01–0.05. Hence it is
reasonable to use the present formulation for a detailed study on the thermal-buckling behavior
and free vibration characteristics of the hemispherical shell under axisymmetric temperature.

3.3. Thermal buckling temperature for hemispherical shell with cut-outs and clamped–clamped

boundary condition

Hemispherical shells with a=h ¼ 100 and 500, base radius equal to 1.0m and the thickness of
the shell equal to 10.0 and 2.0mm are considered for the study. Each shell will have a cut-out at
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simply supported circular edge
R h

symmetric boundary
condition

Fig. 4. Hemispherical shell with simply supported circular edge and symmetric boundary condition at the apex.

Table 2

Convergence of the lowest buckling temperature

Sl. No. Number of elements Lowest buckling temperature Tcri
�C Mode (m; n)

1. 30 3627.3 (25,1)

2. 40 3559.6 (25,1)

3. 50 3535.1 (25,1)
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the apex which subtends an angle 7�, 30� and 45� with the center of the shell. These details are
clear from Fig. 2.
The magnitude of the buckling temperature presented in the study are absolute values, Tabs::

The buckling temperatures are obtained for an arbitrary temperature rise of 30�C. These
temperatures correspond to DT ; where DT ¼ Tabs � T0; where T0 corresponds to the stress-free
temperature assumed equal to 20�C. Fig. 5 provides a graphical picture of the magnitude of the
lowest thermal buckling temperatures associated with first 40 circumferential modes for shell with
a=h ¼ 100: In general, it is found that the buckling temperatures are excessively high and it is
highly impractical to think of operating mild steel at such temperatures or in other words any mild
steel components are never put into long operation beyond temperatures of 200–300�C. It is seen
that the buckling temperatures for hemispherical shell A1 initially increases with increase in
number of modes, reaches a peak and then reduces as the circumferential mode number increases.
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Table 3

Validation of thermal buckling strains evaluated using deep shell theory and FSDT considering the prebuckling forces

h=R Deep shell theory Eslami et al. [28] Present FSDT Percentage difference (%)

0.01 0.004130(9,1) 0.004071(9,1) 1.4

0.02 0.008435(6,1) 0.008435(5,1) 3.9

0.03 0.011200(5,1) 0.01204(5,1) 0.3

0.04 0.017260(5,1) 0.01624(5,1) 5.9

0.05 0.021490(4,1) 0.02034(4,1) 5.1

0.06 0.026140(4,1) 0.023786(4,1) 9.1

0.07 0.031620(4,1) 0.027644(4,1) 12.6

0.08 0.035740(1,1) 0.031643(1,1) 11.48

0.09 0.039910(1,1) 0.03530(1,1) 11.5

0.10 0.044570(1,1) 0.039272(1,1) 11.9
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Fig. 5. Lowest buckling temperature for a clamped–clamped hemispherical shells with a=h ¼ 100:
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The lowest buckling temperature is 3627�C and the associated mode is (25,1), the first integer in
the bracket represents the circumferential mode and the second is the axial mode number.
As in the case of hemispherical shells B1 and C1 the buckling temperature increase with increase

in the initial number of harmonics and immediately decrease and reach a low value and the
buckling temperature is 2436�C for mode (8,1) and 1857�C for mode (10,1). Beyond mode (8,1)
and (10,1) the buckling temperature increases slowly with increase in the number of harmonics.
Considering the three shell configurations it is seen from Fig. 5 that for circumferential modes
beyond 20 it is seen that the buckling temperature does not increase greatly as the mode number
increases.
A study on the distribution of the stress resultants and moment resultants will be dealt

subsequently in order to understand how each of these quantities, stress resultants and moment
resultants, effect the buckling temperature and which among these quantities is more crucial in
influencing the buckling temperature. Fig. 6 (a) and (b) shows the distribution of the meridional
stress resultants, Nss; and circumferential (or hoop) stress resultants, Nyy; along the meridian of
the hemispherical shell with the circular edges clamped.
The axial stress resultants, Nss; in general are very large over a small meridional length from the

circular cut-out edge. The stress resultants are compressive for shell A1 and tensile for shell B1
and C1. As we move from the cut-out region towards the larger circular edge, the stress resultants
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Fig. 6. (a, b) Distribution of meridional and hoop stress resultants for hemispherical shell with a=h ¼ 100; clamped–

clamped boundary condition.
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are very small in magnitude and again over a small length near to the larger circular edge the stress
resultants increase marginally and are compressive in nature. Looking into the distribution of
hoop stress resultants Nyy; Fig. 6(b), it appears to be more or less symmetric about the middle of
the meridian. It is noted that the stress resultants are highly compressive near the clamped circular
edges and spread over a small definite length from the clamped edges and over the midportion of
the shell the hoop stress resultants, Nyy; are negligible in magnitude similar to Nss: For shell A1 the
stress resultants Nss and Nyy are compressive but the magnitude of Nyy is large compared to Nss:
For shells B1 and C1, the axial stress resultant, Nss; are tensile but Nyy is compressive. One needs
to take very close look at the compressive nature of the circumferential stress resultants Nyy

distribution, which vary depending on the cut-out size at the apex of the shell. Accordingly from
Fig. 6 (b), we observe that for shell A1 the distribution of Nyy occurs for a small length compared
to shells B1 and C1. Thus it is evident that the magnitude of buckling temperature is mostly
governed by the stress resultants in the circumferential direction rather than the quantity Nss: In
the studies presented by Ganesan and Kadoli [29] on the thermal buckling of cylindrical shells, it
was found that the buckling temperatures were mostly governed by meridional stress resultants,
Nss: Thus we see a change in the physical quantity from Nss to Nyy; which produces the most
influence on the buckling temperature. This can be attributed to the change in the geometry, i.e.
spherical shells have double curvature when compared to cylindrical shell. The circumferential
stress resultants are high in magnitude and compressive for shells B1 and C1 when compared to
shell A1. Hence the buckling temperatures are comparatively lower in case of shells B1 and C1
when compared to shell A1.
The distribution of the moment resultants, Mss and Myy are also presented in Fig. 7(a) and (b).

The magnitudes of the moment resultants are very small when compared to the stress resultants.
Similar numerical studies are carried out on a hemispherical shell with a=h ¼ 500 and keeping

the rest of the geometrical parameters the same. This shell is much thinner, 2.0mm, compared to
the previous shell, 10.0mm. The lowest buckling temperature associated with first 40 modes is
presented in Fig. 8. For this shell the buckling temperatures are very low when compared to the
shell with a=h ¼ 100: This is expected since the thickness of the shell is less.
The trend in buckling temperature are similar to that observed for shell with a=h ¼ 100: The

important difference observed is that the maximum among the first axial mode buckling
temperature will differ in the mode number. For example, peak buckling temperature for shell B1
with a=h ¼ 100 is mode (2,1) whereas for shell B2 with a=h ¼ 500 it is (5,1). Thus with larger a=h
the maximum among the lowest buckling temperature shifts to higher modes. It is also found that
the buckling temperatures are much lower for higher circumferential modes especially for shell
with cut-out angles 30� and 45�, as low as 350�C. Referring to Fig. 8, the lowest buckling
temperature for shell A2 is 1178�C, for B2 is 304.8�C and for C2 is 241�C. The corresponding
mode numbers are (5,1), (14,1) and (19,1), respectively. Further the stress resultants and moment
resultants are examined in order to ascertain which among these have a dominating influence on
the buckling temperature. Fig. 9(a) and (b) shows the variations of the stress resultants, Nss and
Nyy; for shell with a=h ¼ 500 and clamped–clamped boundary condition.
The distribution of the stress resultants is more or less similar to that observed in the case of

shells with a=h ¼ 100 in Fig. 6(a) and (b), but the magnitudes are high. The circumferential stress
resultants are very much high and compressive in nature when compared to the stress resultants
Nss which are tensile in nature. Since buckling mainly occurs due to increase in the compressive
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Fig. 7. Distribution of moment resultants for hemispherical shell with a=h ¼ 100 and clamped–clamped boundary

condition.
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loading, it is clear that the circumferential stress resultants in the case of the hemispherical shells
play a major role in dictating the thermal buckling temperature. The circumferential stress
resultants, Nyy; are higher in magnitude for the shell C2 and decrease for shell B2 and A2 in that
order. Hence the shell with cut-out angle of 45� has the lowest magnitude of thermal buckling
temperature whereas the shell A2 with cut-out angle 7� has the highest buckling temperature. The
moment resultants have least role to dictate the buckling temperature, and in fact these quantities
are comparatively very small in magnitude and the variations of the same along the meridian are
not presented here.
From the above study presented it is clear that in general the buckling temperatures are high in

magnitude for hemispherical shells with clamped–clamped boundary condition. Shells with high
a=h ratio will have lower buckling temperature. Among the shells considered in the study, the
larger cut-out angle will tend to reduce the buckling temperature enormously.

3.4. Thermal buckling temperature for a hemispherical shell with clamped–free boundary condition

Fig. 2(c) illustrates typical hemispherical shell with cut-out at apex and clamped at the larger
circular edge and the smaller circular edge at the apex is free from constraints. Numerical studies
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clamped boundary condition.

N. Ganesan, R. Kadoli / Journal of Sound and Vibration 277 (2004) 855–879 869



on the thermal buckling temperature and distribution of stress and moment resultants are carried
out on hemispherical shells with a=h ¼ 100 and 500. The angle subtended by the cut-out with
respect to the center of shell is 7�, 30� and 45�. Figs. 10 and 11 illustrates graphically the lowest
thermal buckling temperature for the shells with a=h ¼ 100 and 500. It is evident from the figures
that the buckling temperatures are excessively large.
Referring to Fig. 10, it is noticed that the buckling temperatures are of the order of hundred

thousand for the first circumferential mode irrespective of the size of the cut-out angle at apex.
Smaller the cut-out size larger the temperature and it reduces with increase in cut-out size. For
modes beyond ten the buckling temperatures reduce to the order of thousands and further as the
number of circumferential harmonic increase the temperature reduces continuously to a low
buckling temperature and beyond mode (26,1) the buckling temperature increases. The minimum
among the lowest buckling temperatures are 3618.4�C, 3392.6�C and 3198.7�C, respectively, for
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shell A1, B1 and C1. The corresponding modes are (25,1), (24,1) and (24,1). Fig. 11 likewise
illustrates the lowest buckling temperature associated with first 20 circumferential modes for a
shell with a=h ¼ 500: The buckling temperatures when compared to the shell with a=h ¼ 100 are
lower and of the order of ten thousands for the first few lower modes and beyond the mode
number (8,1), the buckling temperatures are of the order of thousand. When compared to shell
with a=h ¼ 100; we do notice a distinct trend that, larger cut-out size at the apex will lead to lower
buckling temperature. In case of this shell with a=h ¼ 500; which means smaller shell thickness, we
notice from Fig. 11 that (i) for the first mode buckling temperature is high for shell C2 and low for
shell A2. Shell B2 has temperature intermediate to the above two. (ii) For the next few modes, i.e.
from mode number (2,1)–(5,1) the buckling temperature for shell C2 are lower when compared to
shell A2 and shell B2. (iii) For modes (7,1) and (8,1) the trend is same as described in point (i).
Finally, (iv) beyond mode (9,1) the temperature reduces, with shell C2 having the lower
temperatures and shell A2 having higher temperatures. The minimum among the lowest buckling
temperature for shell A2, B2 and C2, respectively, are 1227�C, 985� and 855�C and the associated
modes are (49,1), (49,1) and (48,1). It should be pointed out here that for a clamped–free shell, the
lowest buckling temperatures are associated with very large number of circumferential waves.
Fig. 12(a) and (b) shows the distribution of Nss and Nyy along the meridian of the shell and are

plotted from the free end (i.e. cut-out at apex) of the shell to the clamped circular edge, for shell
with a=h ¼ 100: It is observed that Nss is smaller in magnitude and compressive over a small
length from the free edge of the shell, as we move inwards the stress resultant Nss will take on a
negligible value. Further moving towards the larger circular edge, Nss increases and is tensile in
nature and moving closer to the edge, it changes sign and become excessively compressive. The
stress resultants for shell C1 is high and compressive when compared to shell B1 and A1,
especially over the region at the larger circular edge of the shell (i.e. near the clamped edge of the
shell).
A look into Fig. 12(b) showing the distribution of the circumferential stress resultants Nyy;

reveals that it is more or less close to zero as one starts moving from the cut-out edge towards the
larger circular edge. As one moves towards the larger circular edge the circumferential stress
resultants increase and are tensile over a small meridional length and further it changes sign and
steeply increase to a maximum value (compressive sense). This nature of distribution is true for all
the three shells. Apart from this it also seen that the maximum magnitude of Nyy is developed in
shell C1. However, the difference in maximum magnitude of Nyy among the three shells is not very
large. Thus it can be inferred that the maximum magnitude (and compressive nature) of Nss as
well as Nyy very close to the fixed edge of the shell should be the main reason for the low
magnitude of thermal buckling temperature for shell C1 (i.e. shell with cut-out subtending angle
45� at the center of the shell) when compared to shell B1 and A1.
Fig. 13(a) and (b) shows the distribution of the moment resultants Mss and Myy for a clamped–

free shell with a=h ¼ 100: The distribution pattern is similar to that of Nss or Nyy: The difference is
that close to the cut-out circular edge Mss are tensile and Myy is compressive and lower in
magnitude. The magnitude of moment resultants are very small compared to the stress resultants.
The influence of the moment resultants on the magnitude of buckling temperature may not be as
serious as that due to stress resultants.
The distribution of the stress resultants for a clamped–free shell with a=h ¼ 500 are presented in

Fig. 14(a) and (b). The distribution of the stress resultants even though is similar to that seen in
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Fig. 12(a) and (b), there are subtle differences that needs to be pointed. The stress resultants Nss

are high over a small region near about the clamped edge. The sign of the stress resultants change
abruptly within this small region of the shell. The stress resultants remain more or less negligible
for the rest of the region of the shell. The only difference one notices is that the negative maximum
of Nss is almost same for the three shells (namely shell A2, B2 and C2), which is not so in case of
shell with a=h ¼ 100: When one compares the stress resultant Nyy (Figs. 12(b) and 14(b)) there
isn’t but difference in the distribution pattern. The moment resultants, Mss and Myy are very less
compared to Nss and Nyy: It is clear on comparison of Fig. 14(b) with Fig. 14(a), that the
magnitude of Nyy is much greater when compared to Nss: This gives a clear indication about the
role of Nyy influencing the magnitude of buckling temperature. Thus for a clamped–free shell C2
the buckling temperature are much lower compared to shell B2 and A2, see Fig. 11. It is probably
felt that the very high buckling temperatures for various modes obtained by the present analysis
for the shell with the larger circular edge clamped and edge formed by cut-out left free can be
attributed to the fact that the static stiffness of the shell must be very large. This large static
stiffness under specified boundary condition must have nullified the effect of initial stress
resultants.
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Fig. 12. (a, b) Distribution of stress resultants for hemispherical shell with a=h ¼ 100 and clamped–free boundary

condition.
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3.5. Free vibration characteristics of hemispherical shells with cut-out subjected to steady state
axisymmetric temperature

In this section we present the effect of temperature on the free vibration natural frequency of
the hemispherical shell with different cut-out angle. The geometric stiffness matrix also
contributes to the stiffness of the shell. It is already seen in the earlier section that the thermal
buckling temperatures are very high especially in case of clamped–free hemispherical shell. The
same is true in case of the hemispherical shell with a=h ¼ 100 for clamped–clamped edges. But it is
found in case of hemispherical shell with a=h ¼ 500 and clamped edges that the lowest thermal
buckling temperature for various circumferential harmonics are quite high. Hence from this
practical point of view, the temperatures do permit to present numerical results on free vibration
beyond certain temperature. Few typical results have been presented for modes (10,1), (15,1) and
(18,1). The lowest thermal buckling temperatures for these modes are listed in Table 4. The
maximum temperature considered for analysis is restricted to a much lower temperature mainly
from the point of view of practical aspects like materials at high temperature becoming soft and
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continuous operation at high temperature should be avoided. Further at high temperature the
elastic limit of the material decreases more rapidly than the elastic modulus. The maximum
temperature used in the analysis is listed in Table 5.
Fig. 15–17 illustrates the effect of temperature on the first axial mode free vibration natural

frequency of the shells. Shell with cut-out angle 7� has high buckling temperature. The frequencies
do not reduce appreciably with increase in temperature.
This can probably be attributed to high static stiffness of the shell. For shells with larger cut-out

angle, 30� and 45�, the behavior of the natural frequencies with increasing temperature is as
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Table 4

Buckling temperatures of selected modes of a hemispherical shell with a=h ¼ 500 and clamped edges

Sl. No. Mode Cut-out angle at apex

7� 30� 45�

1 (10,1) 1703.6 366.0 416.2

2 (15,1) 2678.2 306.0 260.9

3 (18,1) 3378.7 330.9 242.0
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Fig. 14. (a, b) Distribution of stress resultants in a clamped–free hemispherical shell with a=h ¼ 500:
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Table 5

Maximum temperature considered for free vibration analysis

Sl. No. Mode Cut-out angle at apex

7� 30� 45�

3 (10,1) 370.4 328.7 356.6

4 (15,1) 345.5 271.7 228.6

5 (18,1) 369.4 314.4 242.0
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expected. The natural frequencies decrease very slowly with the initial increase in temperature, for
temperatures close to the buckling temperature the natural frequencies decrease drastically and
become zero at the buckling temperature.
It is quite reasonable to mention that the stress resultants increase as the temperature increases,

hence the overall stiffness of the shell reduces. Fig. 18(a) and (b) illustrates the distribution of the
stress resultants Nss and Nyy in a shell with cut-out angle 30�, a=h ¼ 500 and clamped edges for
three temperature cases. The circumferential stress resultant, Nyy; is predominantly high and
concentrated near the clamped circular edges. Whereas, the meridional stress resultants, Nss; is
high near the cut-out at the apex when compared to the larger circular edge. Apart from this, the
magnitude of Nss is less compared to Nyy:

4. Conclusions

Linear static thermal buckling and free vibration analysis of hemispherical shells with cut-out at
apex is presented. The hemispherical shell is geometrically perfect and is subjected to a uniform
temperature rise. FSDT describes the kinematic relations for the general shells of revolution. The
field variables are expressed using Fourier series in the circumferential direction and the semi-
analytical method is used to construct the finite element matrices. The finite element formulation
for linear static thermal buckling analysis was verified with the results reported in literature.
Detailed parameter studies are carried out on hemispherical shells with a=h ¼ 100 and 500 (or
h=a ¼ 0:01 and 0.002), cut-out angle of 7�, 30� and 45�, and for two edge conditions (namely
clamped–clamped and clamped–free). The distribution of meridional and hoop stress resultants
were plotted to obtain an insight into their influence on the magnitude of thermal buckling
temperature. The effect of cut-out angle and boundary conditions on the magnitude of thermal
buckling temperature and free vibratory natural frequency of heated hemispherical shell were
clearly examined. The following are the inferences obtained from the study:
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1. The lowest thermal buckling temperatures are largest for hemispherical shell with a=h ¼ 100
compared to a=h ¼ 500: Hence thickness of the shell greatly influences the buckling
temperature.

2. The magnitude of the lowest thermal buckling temperatures for various circumferential modes
is excessively high for hemispherical shell with clamped–free boundary condition when
compared to clamped–clamped shell. The associated circumferential mode number is also very
high.

3. For hemispherical shell with clamped–clamped boundary condition, irrespective of the a=h

ratio, the lowest buckling temperature for shells with larger cut-out will be lower when
compared to shell with smaller cut-out.

4. For Clamped–clamped hemispherical shells with larger cut-out size (i.e. 30� and 45�), the trend
in the magnitude of lowest thermal buckling temperature for various circumferential modes are
more or less similar irrespective of a=h ratio. The influence of a=h is felt only in the associated
circumferential mode number for higher of the lowest thermal buckling temperature. The mode
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number increases as the a=h ratio increases. Similar characteristic feature is observed in case of
hemispherical shell with clamped–clamped edge and smaller cut-out size at apex (i.e. 7�).

5. It is found that primarily the hoop stress resultant dictates the magnitude of the thermal
buckling temperature, either in the case of the clamped–clamped or clamped–free hemispherical
shells.

6. The thermal buckling temperatures for various modes are excessively high for shells with a=h

100 for clamped–clamped and clamped–free edge conditions and for clamped–free shell with
a/h 500, indicating that the static stiffness of these shells are high. Hence the effect of initial
increase in temperature (say up to 330�C) on the variation of natural frequency is not felt
much. This can be easily inferred from the studies carried out on a clamped–clamped shell with
a=h ¼ 500 and smaller cut-out at apex, i.e. 7�, which also has high buckling temperature. For
the same shell with a=h ¼ 500 and larger cut-out at apex, the lowest thermal buckling
temperatures are comparatively lower for higher circumferential modes. Hence the effect of
temperature on the free vibration natural frequency is felt clearly, the frequency gradually
decreases as the temperature of the shell increases.
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